Friends with Beer HBC

Water, water every where

What is Water?

- H₂O (Dihydrogen monoxide)
 - Pure water is colorless, flavorless at room temperature
- The universal solvent
- One of the most important components for brewing good beer
- Adjusting the minerals in water can change a beer

Water dissociates into a hydrogen ion (H+) and a hydroxide ion (OH-).

Sylvia freeman

Water Treatment

- DE drinking water comes from groundwater
- Drinking water
 - Contaminant limits are set by the USEPA
 - DPHL offers testing of private drinking water wells
 - Drinking water providers release reports of contaminants
 - Ward Labs Brewer's test

Ag Testing - Consulting

Account No.: 55665 Water Analysis Report

Invoice No. : 1227013

Date Received : 01/17/2017

Date Reported : 01/18/2017

Lab Number: 318

Results For: CHRISTOPHER MAIN

Location : SampleID :

pH	8.7
Total Dissolved Solids (TDS) Est, ppm	225
Electrical Conductivity, mmho/cm	0.38
Cations / Anions me/l	39/42

	ppm
Sodium, Na	90
Potassium, K	< 1
Calcium, Ca	1
Magnesium, Mg	< 1
Total Hardness, CaCO ₃	3
Nitrate, NO ₃ -N	< 0.1 (SAFE)
Sulfate, SO ₄ -S	1
Chloride, Cl	16
Carbonate, CO ₃	5.9
Bicarbonate, HCO ₃	213
Total Alkalinity, CaCO₃	183
Total Phosphorus, P	0.13
Total Iron, Fe	< 0.01

[&]quot;<" - Not Detected / Below Detection Limit

pН

- Concentration of Hydrogen ions in the water
- Higher H⁺ more acidic
- Lower H⁺ or Higher OH⁻ more basic/alkaline
- Enzymes require a certain range to be effective
- Important for the conversion of starch
 - Optimal range 5.2-5.6 for amylase

Adjusting pH

- Specialty malts
 - The darker the malt the lower it adjusts the pH
- Measuring pH
 - Inexpensive probes are better than paper strips
 - Temperature dependent
 - Higher temperature will raise pH

pН

Suggested Mashing pH Targets (room-temperature measurement)				
Beer Character	Suggested Mash pH Range			
More fermentable wort with less body	5.3 to 5.4			
Less fermentable wort with more body	5.4 to 5.5			
More sharpness or tartness in beer	5.1 to 5.2			
Lighter-colored beers	5.3 to 5.4			
Darker-colored beers	5.4 to 5.6			
Hop-focused beers	5.3 to 5.5			
Malt-focused beers	5.2 to 5.4			

Hardness

- The calcium (Ca+) and magnesium (Mg+) content in water, i.e. minerality of water
 - High Ca and Mg content means harder water
- Ca and Mg are both needed for brewing, with Ca slightly more important
 - Will vary depending on style
- Normally noted as CaCO₃

Ag Testing - Consulting

Account No.: 55665 Water Analysis Report

Invoice No. : 1227013

Date Received : 01/17/2017

Date Reported : 01/18/2017

Lab Number: 318

Results For: CHRISTOPHER MAIN

Location : SampleID :

	ppm
Cations / Anions, me/L	3.9 / 4.2
Electrical Conductivity, mmho/cm	0.38
Total Dissolved Solids (TDS) Est, ppm	225
pH	8.7

Sodium, Na	90
Potassium, K	< 1
Calcium, Ca	1
Magnesium, Mg	< 1
Total Hardness, CaCO ₃	3
Nitrate, NO ₃ -N	< 0.1 (SAFE)
Sulfate, SO ₄ -S	1
Chloride, Cl	16
Carbonate, CO ₃	5.9
Bicarbonate, HCO ₃	213
Total Alkalinity, CaCO ₃	183
Total Phosphorus, P	0.13
Total Iron, Fe	< 0.01

[&]quot;<" - Not Detected / Below Detection Limit

Alkalinity

- The buffering capacity of water
 - How difficult is it to change the pH
- Concentration of carbonate (CO₃), bicarbonate (HCO₃) and hydroxyl (OH⁻)
- High Alkalinity
 - Dull flavors, harsh bitterness, darker beer color
- Low Alkalinity
 - Reduce beer body, affect beer flavor

Ag Testing - Consulting

Account No.: 55665 Water Analysis Report

Invoice No. : 1227013

Date Received : 01/17/2017

Date Reported : 01/18/2017

Lab Number: 318

Results For: CHRISTOPHER MAIN

Location : SampleID :

pH	8.7
Total Dissolved Solids (TDS) Est, ppm	225
Electrical Conductivity, mmho/cm	0.38
Cations / Anions, me/L	3.9 / 4.2

	ppm		
Sodium, Na	90		
Potassium, K	< 1		
Calcium, Ca	1		
Magnesium, Mg	< 1		
Total Hardness, CaCO ₃	3		
Nitrate, NO ₃ -N	< 0.1 (SAFE)		
Sulfate, SO ₄ -S	1		
Chloride, Cl	16		
Carbonate, CO ₃	5.9		
Bicarbonate, HCO ₃	213		
Total Alkalinity, CaCO₃	183		
Total Phosphorus, P	0.13		
Total Iron, Fe	< 0.01		

[&]quot;<" - Not Detected / Below Detection Limit

Residual Alkalinity

- Brewing specific value
 - Helps determine potential mash pH
- $RA = Alkalinity (\frac{Ca}{3.5} + \frac{Mg}{7})$
- RA = ~182

Minerals (lons)

- Minerals important for
 - Mash performance
 - Flavor perception
 - Suitability of water for brewing
- Cation positively charged ion
- Anion negatively charged ion

Ion Effects in Brewing					
Affects Hardness or Alkalinity	Affects Flavor				
Calcium	Sodium				
Magnesium	Chloride				
Bicarbonate	Sulfate				
	Magnesium				

Calcium (Ca⁺)

- Main ion responsible for hardness
- Beneficial for mash and enzyme action
- Yeast composition
- Helps lower the mash pH by liberating H⁺
- Ideal range 50 to 100 ppm
- Gypsum (CaSO₄) or Calcium chloride (CaCl₂)

Magnesium (Mg⁺)

- Secondary ion in hardness
- At low levels adds a sour/bitterness flavor
- At high levels adds astringent flavor
- Used to help lower mash pH
- Ideal range o 30 ppm
- Above 5 ppm to help aid in yeast flocculation
- Epsom Salt (MgSO₄)

Sodium (Na⁺)

- Adds a sour, salty taste at modest levels
- Like with cooking, can help with the "roundness" of the flavor
- Ideal range o to 150 ppm
- Historic water profiles under 60 ppm
- Gose >250 ppm
- Canning salt (NaCl)

Chloride (Cl⁻)

- Accentuates fullness and sweetness
- Improves stability and clarity
- Ideal range 10 to 100 ppm
- High Sulfate, keep <100 pm of Cl⁻ to avoid harshness or minerally flavor

Sulfate (SO₄-)

- Provides a sharper, dryer flavor to highly hopped beers
- Ideal range o to 350 ppm
- Should not be above 150 ppm unless highly hopped
- Above 350 ppm may produce sulfury odors

Bicarbonate (HCO₃)

- Strongly alkaline
- Mainly responsible for the alkalinity in water
- Malt acids consume most of it during mashing
- Lighter colored beers <50 ppm

Unwanted lons

Chlorine

If not removed can produce phenolic compounds during fermentation, i.e. band aid taste

Iron

- Some iron is required for yeast health but comes from grains
- Can be tasted as low as 0.3 ppm

Manganese

- Metallic flavor at concentrations > 0.05 ppm
- Causes black colored deposits on fixtures

• Nitrate

- Regulated by the EPA but can be found naturally in groundwater
- High nitrate can be converted to nitrite during the mash
- High nitrite is poisonous to yeast

SO₄ to Cl⁻ Ratio

- Can influence perceived bitterness or maltiness
- Ratio of 2 or greater can enhance hop bitterness
- Ration less than 1 can enhance the maltiness
- 30 ppm SO₄ and 30 ppm Cl is different than a 300 ppm SO₄ and 300 ppm

SO₄/Cl⁻¹

- o-o.4: Too Malty
- 0.4-0.6: Very Malty
- o.6-o.8: Malty
- 0.8-1.5: Balanced
- 1.5-2.0: Slightly Bitter
- 2-4: Bitter
- 4-9: Very bitter
- 9+: Too bitter!

Historic Profiles

Ion Profiles for Major Brewing Centers							
Brewing	g Ion Concentrations (mg/L)						Residual
Center	Calcium	Magnesium	Sodium	Sulfate	Chloride	Bicarbonate	Alkalinity
Burton	275	40	25	610	35	270	5
Dortmund	230	15	40	330	130	235	20
Dublin	120	4	12	55	19	315	170
Dublin-	18	2	13	22	20	35	15
Wicklow							
Edinburgh	100	20	55	140	50	285	150
London-	20	5	175	65	125	260	196
Wells							
London-	40	5	30	70	40	60	18
Thames							
Munich	77	17	4	18	8	295	180
Pilsen	7	2	2	8	6	5	5
Vienna	75	15	10	60	15	225	125

Other Profiles

Style	Ca	Mg	Na	SO ₄	Cl	Bicarbonate	Residual Alkalinity	SO _, /Cl Ratio
Amber (7-17 SRM), Balanced	50	10	15	75	63	40	-9	1.19
Amber (7-17 SRM), Dry	50	15	15	110	50	45	-8	2.2
Amber (7-17 SRM), Full	50	5	15	55	65	35	-10	0.85
Black (>31 SRM), Balanced	50	10	33	57	44	142	75	1.3
Black (>31 SRM), Dry	50	15	33	84	39	145	74	2.15
Black (>31 SRM), Full	50	5	33	35	45	140	76	0.78
Brown (18-31 SRM), Balanced	50	10	27	70	55	90	32	1.27
Brown (18-31 SRM), Dry	50	15	27	99	45	95	33	2.2
Brown (18-31 SRM), Full	50	5	27	50	60	95	31	0.83
Yellow (<6 SRM), Balanced	50	10	5	60	75	0	-40	0.8
Yellow (<6 SRM), Dry	50	15	5	105	45	0	-42	2.33
Yellow (<6 SRM), Full	50	5	5	55	70	0	-39	0.79

Edit Water Profile Profile Name Home Type Water 8.7 Source Cations 3.97 mEq/L Calcium Ca²⁺ Magnesium Mg²⁺ Sodium Na+ ppm 1 0 90 Anions 4.01 mEq/L Sulfate SO₄2-Bicarbonate HCO₃-Chloride Cl ppm 16 3 213 Stats SO42-/CIratio Hardness Alkalinity Residual Alkalinity 0.19 COPY CANCEL SAVE

- Software Demo on Water additions
- Hop-water experiment

Hop Water

- 4 g of hops in 1 gal of distilled water
 - Steep for 6 hours/over night
 - Carbonate 3 1 bottles with a Sodastream
- No Mineral additions
- Dry (i.e. attenuate the hops) SO₄/Cl of 2.3
 - o.1 g CaSO₄, o.1g MgSO₄, o.1g CaCl₂ in 1 l
- Full (i.e. attenuate malt) SO₄/Cl of o.8
 - o.1 g CaSO₄, o.1g CaCl₂ in 1 l

Guess the hop

